Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Алтайский государственный технический университет им. И. И. Ползунова»

Факультет информационных технологий

Кафедра информационных технологий

Отчет защищен с оценкой								
Руково	Руководитель от вуза							
		Т.В. Котлубовская						
	подпись	и. о. фамилия						
«»		2013 г.						

Отчёт

по производственной практике в

ООО «Бочкаревский пивоваренный завод»

название предприятия, организации, учреждения

ПП 200106.17.000 О

обозначение документа

Студент группы	ИИТ-01	К.В. Пушкин				
	группа	подпись	и. о. фамилия			
Руководитель практики						
от предприятия						
	должность, ученая степень	подпись	и. о. фамилия			
Руководитель практики						
от вуза	доцент, к.т.н.		Т.В. Котлубовская			
	TOTALLOCKE MICHOR OF STORING	полица	и о фомилия			

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Алтайский государственный технический университет им. И. И. Ползунова»

Факультет информационных технологий Кафедра информационных технологий

		F	Кафедр	ра информационных т	гехнологий		
						ЕРЖДА]	Ю кафедрой
					завед	-	
							<u>С. П. Пронин</u> 2013 г.
					\\// ₋		2013 1.
				ЗАДАНИЕ			
			no	производственной пр	актике		
		200					
по сп	іециальност	и 200	וע סטוי	нформационные т	ехнологи		
студе	енту группь	ı ИИ	T-01	Пушкину Кирі	иллу Buma	льевич	У
•				ного конвейера. Изу			
	контр	оля ле	гнточ	ного конвейера.			
На б	азе: <mark>ООО «</mark>	Боика	neecki	ий пивоваренный з	പ്പെട്ടാ		
1100		bo ika	DCOCK				
Спок	и практики	c	20	13 г. по201	3 г		
					51.		
Кале	ндарный пл	ан выі	толнен	ия задания			
	Н	аимен	овани	е задач,	Дата выпо	лнения	Подпись
			ющих	задание	задач	ИИ	руководителя
	етическая ч						
	[енточный к		_	U			
	истемы упр		ия кон	веиера			
1 -	стическая ча		• ========				
	•	ионтаж	сдатчи	иков контроля			
	онвейера Унстематиза	1111 <i>a</i> 111	ιΔιΔιιιι	VOG HO HINAHINHATHA			
	истематиза атчиков кон			хся на предприятие			
	ита отчета п						
Руко	водитель пр	актик	_		_	5 1/	
от ву	73a			нт, к.т.н .			плубовская
			должност	ь, ученая степень подп	ИСЬ	1	и. о. фамилия
			<u> </u>				
			\dagger	20010	06.17.0	n n n	001
Изм. Лист		Подп.	Дата	20070	, U. 1 / . U		
Brance	Пушкин		$oxed{oxed}$			Лит.	Лист Листов
Риния.	Котлубовская	Ī				У 	2 2

Отчет о практике

Н. контр.

Утв.

Котлубовская

Пронин

АлтГТУ, ФИТ,

гр. ИИТ-01

СГУД	ент группы		ИИТ-01				K	<i>К.В. Пуи</i>	ІКИН
<i>J</i>	1 3	-	группа		подпись			о. фамилия	
				7	00106	06 C	nnn (nn 2	
. Лисп		Ποдп.	Дата	2	00106.	06.0	000.0	002	
	Сергеева	Подп.	Дата	2	00106.	06.0	Лит.	Лист	Лис
		Подп.	Дата						Лис
л. Лисп раб. контр	Сергеева Котлубовская	Ποдп.	Дата		00106.		Лит.	Лист	Ź

Содержание

Введение	5
1 Теоретическая часть	6
1.1 Принтеры	6
1.1.1 Принтеры. Основные параметры	6
1.1.2 Матричные принтеры	7
1.1.3 Струйные принтеры	7
1.1.4 Лазерные принтеры	8
1.2 Осциллографы	9
1.2.1 Основные параметры	9
1.3 Печатные платы	10
1.3.1 Теоретические основы	10
1.3.2 Пайка печатных плат	11
1.3.3 Практические сведения	11
2 Практическая часть	14
3 Охрана труда	16
3.1 Общие положения	16
3.2 Требования безопасности во время работы	16
3.2.1 При работе на ПВЭМ	16
3.2.2 При работе с микросхемами и элементами	17
3.3 Требования безопасности в аварийных ситуациях	18
3.4 Требования безопасности по окончанию работы	18
Заключение	19
Список использованных источников.	20
Приложение А. Оборудование	22

Изм.	Лист	№ докум.	Подп.	Дата

Введение

Цель производственной практики — закрепление знаний, освоение дисциплин по специальности «Информационно-измерительная техника и технологии». Место прохождение практики: ООО «Бочкаревский пивоваренный завод», расположенный по адресу: Алтайский край, Целинный район, с.Бочкари, ул. Молодежная 1А.

Направление работ при прохождении производственной практики — это изучение ленточного конвейера, замена неисправных частей, обслуживание и ремонт датчиков контроля конвейером.

В обязанности проходящего производственную практику на ООО «Бочкаревский пивоваренный завод»: изучение ленточного конвейера, изучение систем управления ленточного конвейера, обслуживание и ремонт датчиков управления ленточного конвейера, ведение систематических записей о работе конкретного датчика, с целью выявления ошибок в работе. Так же в обязанности входит обработка данных о имеющихся на предприятие датчиков контроля производства с целью создания в дальнейшем общей базы данных с полной информацией о датчикам имеющихся на данном предприятие, тем самым систематизируя работу по обработке запросов на закупку необходимых запасных частей.

Изм.	Лист	№ докум.	Подп.	Дата

1.1 Общие сведения о ленточных конвейерах

конвейеры являются наиболее Ленточные распространенным типом транспортирующих машин непрерывного действия BO всех отраслях Из промышленности. более чем полумиллиона конвейерных установок, эксплуатирующихся в нашей стране, 90% составляют ленточные конвейеры. Они используются в горнодобывающей промышленности — для транспортирования руд полезных ископаемых и угля при открытой разработке, в металлургии — для подачи земли и топлива, на предприятиях с поточным производством—для транспортирования заготовок между рабочими местами и т. д. [2].

1.2 Ленточные конвейеры с резинотканевой лентой

1.2.1 Описание наиболее распространенных видов лент

Наиболее широко распространены резинотканевые ленты (рисунок 1; ГОСТ 20—76), состоящие из резинотканевого послойного тягового каркаса 1 и наружных резиновых обкладок 2, предохраняющих каркас от механических повреждений и от воздействия на него влаги, газов, агрессивных сред. В зависимости от условий эксплуатации и назначения изготовляют ленты общего назначения, морозостойкие, теплостойкие, пищевые и негорючие. В зависимости от типа ленты установлены диапазоны температур окружающей среды.

Так же широко распространены: ленты с перегородками, гофрированными выступами и бортами, трубчатые и др. [3].

сильные, но при высокой влажности. Дело в том, что пары воды, так же как и жидкая вода, обладают гораздо большей теплоемкостью, чем воздух. Поэтому во влажном воздухе тело отдает в окружающее пространство больше теплоты, чем в сухом.

Изм.	Лист	№ докум.	Подп.	Дата

В жаркую погоду высокая влажность опять же вызывает дискомфорт. В этих условиях уменьшается испарение влаги с поверхности тела (человек потеет), а значит, тело хуже охлаждается и, следовательно, перегревается. В очень сухом воздухе тело теряет слишком много влаги и, если не удается ее восполнить, это сказывается на самочувствии человека.[2]

Абсолютно сухого воздуха практически не бывает. В нем всегда присутствует влага хотя бы в следовых количествах. Оказывается, что ничтожные количества воды иногда могут сильно влиять на химические свойства многих веществ. В 1913 г. английским химиком Бейкером было установлено, что жидкости, осущенные в течение девяти лет в запаянных ампулах, кипят при гораздо более высоких температурах, чем указано в справочниках. Например, бензол начинает кипеть при температуре на 26° выше обычной, а этиловый спирт - на 60, бром - на 59, а ртуть - без малого на 100°. Температура замерзания этих жидкостей повысилась. Влияние следов воды на эти физические характеристики до сих пор не нашли удовлетворительного объяснения. В хорошо высушенном кислороде уголь, сера, фосфор горят при температуре, на много превышающей температуру их горения в неосушенном воздухе. Считают, что влага играет каталитическую роль в этих химических реакциях. Из пересыщенного водяными парами воздуха образуется туман. Он состоит из мельчайших капелек воды размером от 0,0001 до 0,1 мм. Капельки воды легче конденсируются на твердых частичках, находящихся в воздухе в виде пыли[6].

На данном принципе основаны процессы образования искусственного дождя. Для этого в тучи вводят затравки, на которых происходит конденсация воды или кристаллизация льда. Крупные градины получаются в том случае, если кристаллизация происходит на малом количестве центров. Если в тучу будет введено много затравок, то получатся мелкие кристаллы льда (они не могут вырасти, так как вся вода будет закристаллизована), которые при падении на землю часто успевают расплавиться и превратиться в дождь. Для широкого применения эти соли довольно дороги. Однако град может привести к гораздо

большим экономическим потерям. Кроме дождя и града атмосферные осадки также выпадают в виде снега. [1]

1.2 Гидрологический цикл

При испарении воды ее молекулы образуют водяной газ, называемый водяным паром. В атмосфере содержится также вода в жидком состоянии в виде облачных капелек и дождевых капель. Ледяные кристаллы, снежинки и градины - это атмосферная вода в замерзшем состоянии. В отличие от большинства других присутствующих в атмосфере газов содержание водяного пара может очень сильно меняться. Оно зависит от температуры воздуха и состояния испаряющей поверхности (вода, почва влажная или сухая, лед). В очень холодном и поэтому сухом воздухе водяной пар может находиться в лишь малом, с трудом измеряемом количестве; в жарком воздухе его содержание может достигать 4 процентов объема воздуха и тогда такой воздух становится влажным[6].

Когда водяной пар поступает в воздух, он, как и все другие газы, создает определенное давление, называемое парциальным. Оно выражается в единицах давления (гПа). По мере того как молекулы воды переходят в воздух, давление пара в воздухе увеличивается. Когда достигается равновесие между числом молекул, покидающих воду и возвращающихся в неё, пар становится насыщенным, а его давление равновесным. Если температура воздуха продолжает увеличиваться, то для поддержания насыщенного состояния пара число молекул, поступающих в воздух, также должно увеличиваться, если, конечно, жидкость еще имеется.

Давление пара служит мерой для другой величины, также выражающей количество пара, содержащегося в воздухе, и называемой абсолютной влажностью. Абсолютная влажность представляет собой массу водяного пара, содержащегося в единице объема воздуха. Обычно её выражают в г/м³.

Содержание в воздухе водяного пара часто выражается в единицах относительной влажности, значение которой сообщаются в ежедневных сводках

погоды. Она представляет собой отношение количества пара, фактически содержащегося в воздухе, к количеству насыщенного пара при данной температуре и выражается в %. Величину эту легко пояснить с помощью примеров из жизни. Когда воздух насыщен, его относительная влажность составляет 100%; можно сказать, что насыщенный воздух заполнен водяным паром, а если она 10%, то пара в воздухе находится 10% от максимально возможного. Поэтому, если относительная влажность мала, скажем 10%, то мокрое белье на улице высохнет быстро, особенно в жаркий день.[9]

Хорошо известно, что температура +30°C легче переносится человеком в сухом климате, чем во влажном. Когда относительная влажность мала, пот с поверхности тела быстро испаряется, и это приносит ощущение прохлады. Водяной пар попадает в атмосферу в результате испарения воды океанов и озер, с поверхности земли, в результате транспирации (испарения воды растениями). С поверхности океанов ежегодно испаряется 5,05·10⁸ Мт, а с поверхности материков 0,72·10⁸ Мт воды. Водяной пар переносится атмосферными движениями, конденсируется и возвращается на поверхность земли в виде дождя и снега. Большая часть вернувшейся воды вновь испаряется; остальная впитывается в землю, попадает в ручьи и реки и течет к озерам и океанам, а затем испаряется с их поверхности. Этот ход событий называется гидрологическим циклом[7].

Общее количество воды, участвующее в гидрологическом цикле составляет 12-14 тыс. км³, что можно выразить слоем воды толщиной 25 мм, равномерно покрывающим весь земной шар. Осадки и испарение для земли в целом составляют по 1130 мм в год.

Осадки над сушей (800 мм) больше испарения (485 мм) и их разность равна годовому стоку рек в океан (315 мм). Над океаном, напротив испаряется воды больше (1400 мм), чем выпадает осадков (1270 мм), и эта разность представляет собой сток водяного пара с океана на сушу. В многолетнем выводе количество воды участвующей во влагообороте, остается постоянным. Таким образом, осадков за год выпадает на Земле в 40 раз больше, чем содержится водяного пара в атмосфере.

В году наблюдается в среднем для Земли 45 гидрологических циклов, а водяной пар в атмосфере обновляется через каждые 8-10 суток. Это время жизниводяного пара значительно короче времени жизни многих других находящихся в атмосфере газов. К примеру, время жизни в атмосфере двуокиси углерода составляет несколько десятков лет, кислорода - около 3000лет.[4]

Несмотря на относительно короткое время жизни, водяной пар переносятся на огромные расстояния от места испарения до места выпадения в виде осадков. Скорость переноса водяного пара воздушными течениями по широте (зональный перенос) составляет в среднем 220 км/сут. При этом среднее число смен водяного пара за один оборот вокруг Земли равно 13,5. За год в виде различных осадков из атмосферы выпадает 577 000 км³ воды. На испарение такого количества воды затрачивается много тепла. Для всей земной поверхности это составляет 10²⁴ Дж/год, т.е. 25% солнечной энергии, поступающей на Землю[6].

При конденсации водяного пара в атмосфере это тепло возвращается в атмосферу, как говорят, в форме скрытого тепла конденсации. В атмосферных процессах водяной пар и продукты его конденсации во многом определяют погодные условия, не только вследствие развития облачности и выпадения осадков, но и участвуя в энергетических процессах[8].

1.3 Искусственные измерители

1.3.1 Емкостные

В простейшем случае емкостные гигрометры это просто обычные конденсаторы с воздушным зазором. Диэлектрическая проницаемость воздуха зависит от влажности, и ее изменение приведет к изменению емкости.

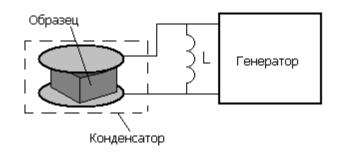


Рисунок 1 – Схема емкостного гидрометра

В более сложном случае воздушный зазор может быть заменен диэлектриком, диэлектрическая проницаемость которого сильно меняется под действием влажности. Такой подход позволяет улучшить качества датчика [14].

Кроме того, этот подход может использован для измерения содержания влаги в твердых веществах. Между обкладками конденсатора кладется измеряемый объект, например таблетка, конденсатор подключается к генератору и LC колебательному контуру, счетчик будет измерять частоту контура, по этой частоте можно говорить об величине колебательного контура. Этот метод имеет некоторые недостатки: при влажности ниже 0.5% он неточен, также требует очистки образца от частиц с высокой диэлектрической проницаемости, кроме того важна форма образца во время проведения испытаний, она не должна меняться[16].

Последний тип это тонкопленочный емкостных гигрометр. Он состоит из подложки, а на него нанесены два электрода имеющие гребенчатую форму. На рисунке один из них изображен красным, второй синим. Эти два электрода и будут играть роль обкладок конденсатора. Для дополнительной термокомпенсации в датчики такого типа вводят два датчика температуры[22].

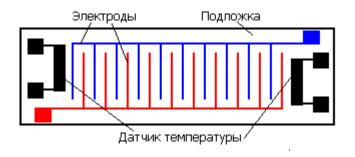


Рисунок 2 – Схема емкости гидрометра

1.3.2 Резистивные

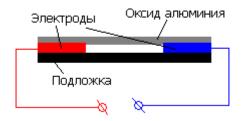


Рисунок 3 – Схема резистивного гидрометра

Этот датчик состоит из двух электродов нанесенных на подложку, а сверху этих электродов наносится слой материала с достаточно низким сопротивлением, но это сопротивление очень сильно зависит от влажности. Таким материалом может является оксид алюминия. Этот материал хорошо поглощает воду из окружающей среды, отчего меняется его удельное сопротивление. В итоге общее сопротивление этого датчика будет зависеть от влажности, а по величине протекающего тока судят об уровне влажности [9].

Главное преимущество этих датчиков их малая стоимость.

1.3.3 Термисторные

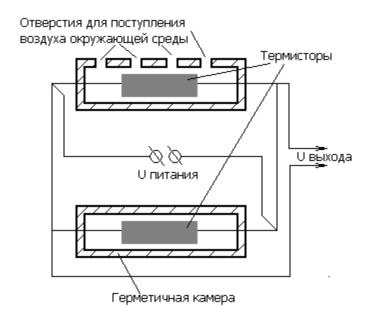


Рисунок 4 – Схема термисторного гидрометра

Термисторные гигрометры состоят из двух термисторов. Напомним, что термистор это сопротивление чувствительное к изменению температуры. Один из этих терморезисторов помещают в герметичную камеру с сухим воздухом. А второй в камеру с отверстием, через которое поступает воздух с неизвестной влажностью. Эти терморизисторы соединяют в мостовую схему. На одну диагональ моста падают напряжение, а на другой снимают результаты. Если выходной напряжение равно нулю, то значит, температура обоих термисторов одинакова, а значит и одинакова влажность. Соответственно, если на выходе появляется напряжение, то значит влажности в сухой и измеряемой камере разные, по величине и знаку напряжения можно судить о величине влажности[21-23].

Почему же температура терморезистора изменяется при взаимодействии на него влажного воздуха!? Дело в том, что при повышенной влажности на терморезисторе начинает испаряться влага, а при испарении температура уменьшается. Чем выше влажность, тем интенсивней идет испарение и тем сильнее остывает терморезистор.

1.3.4 Оптические

Самый точный вид гигрометров. В основу работы этого типа датчиков влажности заложено понятие точки росы.

Если взять стекло поместить его в газообразную среду, при температуре выше точки росы и начать охлаждать, то при определенной температуре на стекле будут выступать капли воды. Температура при которой начнут появляться эти капли и будет точкой росы [6-9].

Точка росы зависит от двух параметров: давления и влажности окружающей среды. В итоге если мы сможем измерить точку росы и давление, то сможем с легкостью определить характеристики влажности. Этот принцип и заложен в оптических датчиках влажности[17].

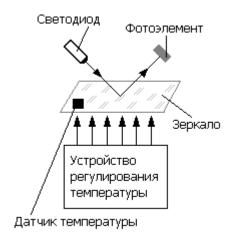
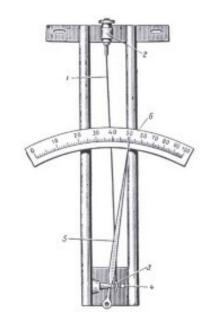


Рисунок 5 – Схема оптического гидрометра

На рисунке изображена упрощенная схема оптического гигрометра. Он состоит из диода, который светит на зеркало. Зеркало в свою очередь отражает свет на фотодетектор. Зеркало может подогреваться или охлаждаться специальным высокоточным устройством регулирование температуры. В качестве такого устройства часто используется термоэлектрический насос. На зеркале установлен датчик измерения температуры. В начале измерения температура зеркала выставляется на уровень выше точки росы. Затем происходить его постепенное охлаждение. Как только температура пересекает

точку росы, на зеркале начинают появляться капли и луч света преломляясь от них, рассеивается, что влечет уменьшение тока на выходе фотодетектора. Фотодетектор с помощью обратной связи соединен с устройством регулирования температуры зеркала. Это устройство с помощью сигналов от фотодетектора будет удерживать температуру равную точке росы, не больше и не меньше, а термодатчик выдаст сигнал соответствующий этой температуре. При известном давлении по этой информации можно будет определить все показатели влажности(RH, давление пара и другие) [20].


Этот тип датчиков имеет как неоспоримое преимущество — самая высокая точность, недостижимая другими типами датчиков, и отсутствие гистерезиса. Так и недостатки — самая высокая стоимость, большое потребление электроэнергии и иногда может возникать необходимость чистки зеркала.

1.3.5 Гигрометры

Гигрометр — измерительный прибор для определения влажности воздуха. Существует несколько типов гигрометров, действие которых основано на различных принципах: весовой, волосной, плёночный и прочих.

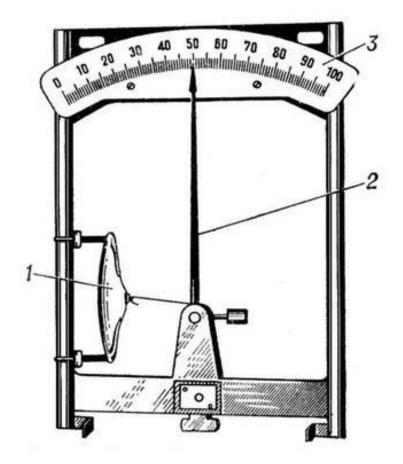
Весовой (абсолютный) гигрометр состоит из системы U-образных трубок, наполненных гигроскопическим веществом, способным поглощать влагу из воздуха. Через эту систему насосом протягивают некоторое количество воздуха, влажность которого определяют. Зная массу системы до и после измерения, а также объём пропущенного воздуха, находят абсолютную влажность[5].

Действие волосного гигрометра основано на свойстве обезжиренного волоса изменять свою длину при изменении влажности воздуха, что позволяет измерять относительную влажность от 30 до 100 %. Волос натянут на металлическую рамку. Изменение длины волоса передаётся стрелке, перемещающейся вдоль шкалы.

Устройство волосяного гигрометра:

1-обезжиренный волос;

2-регулировочный винт;


3-дужка;

4-рычажок;

5-стрелка.

Рисунок 6 – Волосяной гигрометр

Плёночный гигрометр имеет чувствительный элемент из органической плёнки, которая растягивается при повышении влажности и сжимается при понижении. Изменение положения центра плёночной мембраны передаётся стрелке. Волосной и плёночный гигрометр в зимнее время являются основными приборами для измерения влажности воздуха. Показания волосного и плёночного гигрометра периодически сравниваются с показаниями более точного прибора — психрометра, который также применяется для измерения влажности воздуха[8].

Условное обозначение:

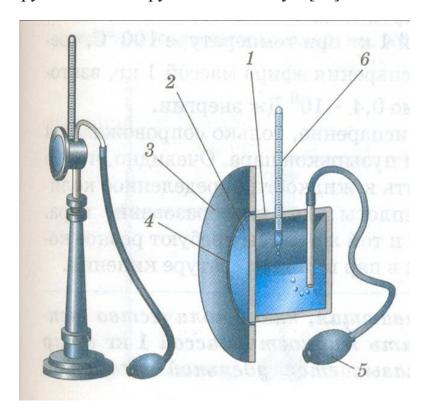

- 1 мембрана;
- 2 стрелка;
- 3 шкала.

Рисунок 7 - Плёночный гигрометр

В электролитическом гигрометре пластинку из электроизоляционного материала (стекло, полистирол) покрывают гигроскопическим слоем электролита — хлористого лития — со связующим материалом. При изменении влажности воздуха меняется концентрация электролита, а следовательно, и его сопротивление; недостаток этого гигрометра — зависимость показаний от температуры[11].

Действие керамического гигрометра основано на зависимости электрического сопротивления твёрдой и пористой керамической массы (смесь глины, кремния, каолина и некоторых окислов металла) от влажности воздуха.

Конденсационный гигрометр определяет точку росы по температуре охлаждаемого металлического зеркальца в момент появления на нём следов воды (или льда), конденсирующейся из окружающего воздуха[22].

Условное обозначение:

- 1 металлическая коробка;
- 2 полированная стенка;
- 3 полированное кольцо;
- 4 Теплоизолированная прокладка;
- 5 Резиновая груша;
- 6 Термометр.

Рисунок 8 - Конденсационный гигрометр:

Конденсационный гигрометр состоит из устройства для охлаждения зеркальца, оптического или электрического устройства, фиксирующего момент конденсации, и термометра, измеряющего температуру зеркальца. В современных конденсационных гигрометрах для охлаждения зеркальца пользуются полупроводниковым элементом, принцип действия которого основан на Пельтье эффекте, а температура зеркальца измеряется вмонтированным в него проволочным сопротивлением или полупроводниковым микротермометром.

Всё большее распространение находят электролитические гигрометры с подогревом – термогигрометры, действие которых основано на принципе измерения точки росы над насыщенным соляным раствором (обычно хлористым литием), которая для данной соли находится в известной зависимости от влажности. Чувствительный элемент состоит из термометра сопротивления, на корпус которого надет чулок из стекловолокна, пропитанный раствором хлористого лития, и двух электродов из платиновой проволоки, намотанных поверх чулка, на которые подаётся переменное напряжение[23].

1.3.6 Психрометр

Прибор состоит из двух одинаковых термометров. Резервуар одного из термометров обернут куском чистого батиста, нижний край которого опущен в небольшой стеклянный стаканчик с дистиллированной водой. Вода смачивает батист и испаряется на шарике термометра, если водяной пар в воздухе не является насыщенным. Вследствие потери тепла на испарение шарик термометра охлаждается и смоченный термометр показывает меньшую температуру, чем сухой. Разница между показаниями термометров тем больше, чем больше отличается давление водяного пара, содержащегося в воздухе, от давления насыщенного пара[10].

По показаниям сухого и смоченного термометров при помощи особых психрометрических таблиц находят давление водяного пара и относительную влажность воздуха.[3]

2 Разработка функциональной схемы прибора для определения влажности воздуха

2.1 Описание и технические характеристики средства измерения влажности воздуха и температуры ИВТМ-7М

Назначение измерителя ИВТМ-7М

Прибор предназначен для измерения относительной влажности и температуры воздуха в лабораториях, банковских хранилищах и офисах, библиотеках, музеях, гостиничных комплексах, киноконцертных залах, в производственных, складских, торговых и жилых помещениях и вне их. ИВТМ-7М может использоваться как автономный регистрирующий прибор для сопровождения грузов.

Основные сведения и технические характеристики:

- -Диапазон измерения относительной влажности: 0...99%;
- -Разрешающая способность, % в диапазоне от 0 до 10 %: 0,1;
- -Разрешающая способность, % в диапазоне от 10 до 99 %: 1;
- -Погрешность измерения относительной влажности при 25 ± 5 0C, $\%\pm2$;
- -Дополнительная температурная погрешность измерения относительной влажности в диапазоне от -20 до +60 $^{\circ}$ C, % $^{\circ}$ C: не более ±0,1;
- -Диапазон измерения температуры, ^оC: -20 (-40) ... +60;
- -Разрешающая способность, ⁰C: 0,1;
- -Погрешность измерения температуры, ${}^{0}\text{C} \pm 0,5 \ (0,2);$
- -Габаритные размеры блока измерения и индикации, мм: 120x20x70;
- -Габаритные размеры выносного зонда, мм: 10x10x100;
- -Суммарная масса блоков, кг, не более: 0,3;

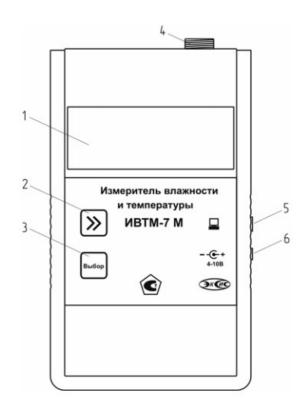
Измеритель "ИВТМ-7М" обладает достоинствами: длительное время работы в автономном режиме, возможность подключения к компьютеру и объединение в сеть, высокая точность измерений, прибор позволяет запоминать около 10 тысяч измерений с задаваемым интервалом и привязкой к реальному времени, что обеспечивает протоколирование результатов измерений.

Конструктивно измеритель "ИВТМ-7М" выполняется в виде двух блоков — измерительного зонда и блока индикации и измерений. Измерительный зонд может устанавливаться непосредственно на корпус прибора или соединяться с ним при помощи кабеля. Индикация показаний прибора осуществляется с помощью жидкокристаллического индикатора. В приборе предусмотрен вывод результатов на компьютер. Прибор может быть выполнен в черном или белом пластмассовом корпусе.

Рисунок 9 – Прибор для измерения влажности воздуха и температуры ИВТМ-7М

2.2 Конструкция прибора ИВТМ-7М

Устройство прибора


Прибор состоит из блока измерения и первичного преобразователя, соединяемого с блоком измерения удлинительным кабелем длиной до 10 метров или устанавливаемого непосредственно на блок измерения.

Блок измерения. Конструкция блока.

Блок измерения изготавливается в пластмассовом корпусе. На передней панели измерительного блока располагаются: четырех или пяти (в зависимости от исполнения) разрядный жидкокристаллический индикатор (ЖКИ) и две кнопки управления.

На боковой поверхности располагаются разъёмы интерфейсов RS-232, RS-485, USB (в зависимости от исполнения); разъем подключения сетевого адаптера (в зависимости от исполнения); разъем подключение внешней карты памяти (в зависимости от исполнения), светодиод Bluetooth(в зависимости от исполнения).

На верхней панели расположен разъем для подключения первичного преобразователя влажности. На задней панели располагается отсек для сменных элементов питания. Внешние виды измерительных блоков приведены на рисунках 3.1 - 3.5

Условное обозначение:

- 1 ЖКИ индикатор;
- 2, 3 Кнопки;
- 4 Разъем подключения преобразователя;
- 5 Разъем для подключения к компьютеру RS-232;
- 6 Разъем для подключения сетевого адаптера.

Рисунок 10 - Внешний вид измерительного блока ИВТМ -7 М

2.2.1 Первичный преобразователь влажности (выносной зонд)

Конструкция.

Первичный преобразователь выпускается в металлическом корпусе, в котором находится печатная плата. Чувствительные элементов влажности и температуры располагаются внутри колпачка, изготавливаемого из пористого никеля, алюминия или фторопласта в зависимости от исполнения преобразователя.

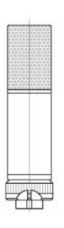


Рисунок 11 - Первичный преобразователь

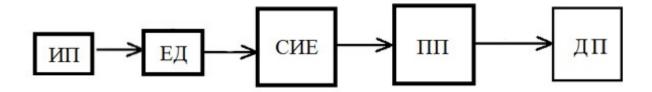
Принцип работы

В качестве чувствительного элемента влажности в преобразователе сорбционного Для используется емкостной типа. измерения сенсор температуры применяется платиновый терморезистор. Питание преобразователя осуществляется от измерительного блока напряжением 3В постоянного тока.

Преобразователь преобразует влажность и температуру в напряжения, которые передаются измерительному блоку.

2.3 Принцип работы

Блок измерения и индикации информацию считывает ИЗ измерительного преобразователя влажности – температуру влажность анализируемой среды - и индицирует их на ЖК-индикаторе. Сигнал от измерительного преобразователя представляет собой напряжение, которое измеряется перечитывается блоком по калибровочным функциям в И и температуры . Интервал опроса преобразователя значения влажности составляет около одной секунды.


Измерительный блок может пересчитывать основные единицы измерения влажности % в г/м3.

Регистрация измерений. При необходимости использовать в приборе функцию регистратора следует приобретать его в комплекте с программным

обеспечением для компьютера. Данные, полученные от измерительного преобразователя влажности, записываются в энергонезависимую внутреннюю определенным периодом. Настойка периода, ИЛИ внешнюю память cсчитывание и просмотр данных осуществляется с помощью программного обеспечения. В исполнениях с внешней памятью на SD- картах производить считывание информации с карт c помощью « кардридера » установленного в компьютере. В исполнениях ИВТМ -7 М 7-1, считывание информации можно производить по Bluetooth.

Интерфейс связи. По интерфейсу связи из прибора могут быть считаны текущие измерения влажности температуры, значения И накопленные данные измерений, изменены настройки прибора. Измерительный блок может работать компьютером или иными контроллерами по интерфейсам RS-232, RS-485, USB, Bluetooth (в зависимости обмена по интерфейсам otисполнения). Скорость RS-232 и RS-485 настраивается пользователем в пределах от 4800 до 38400 бит/с. Приборы с USB интерфейсом и Bluetooth при подключении к компьютеру определяются как виртуальный СОМ- порт. Скорость обмена с виртуальным СОМ- портом фиксированная - 115200 бит/ с.

Данная функциональная схема ёмкостного гигрометра спроектированного в домашних условиях.

Условные обозначения:

ИП – источник питания;

ЕД – ёмкостный датчик;

СИЕ – схема измерителя ёмкости;

ПП – преобразователь цифрового сигнала в значение влажности;

ДП – Дисплей вывода информации.

Рисунок 12 – Принципиальная схема ёмкостного термогигрометра

2.4 Разработка принципиальной схемы и печатной платы

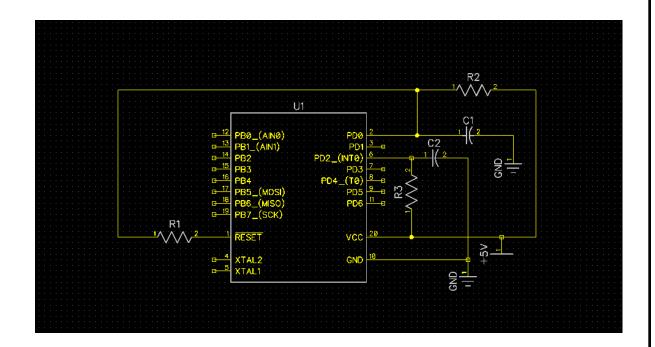


Рисунок 13 — Принципиальная схема электрического гигрометра, спроектированного в программе Diptrace

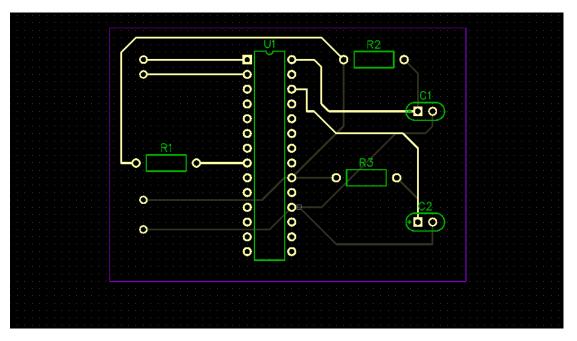


Рисунок 14 – Печатная плата прибора электронного термогигрометра

(вид сверху)

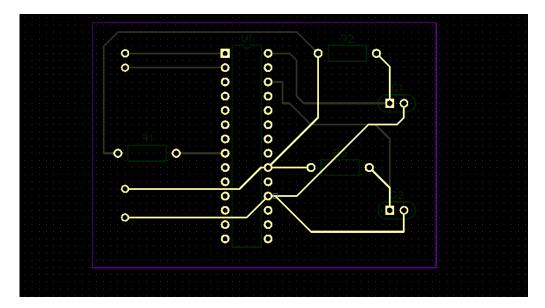


Рисунок 15 — Печатная плата прибора электронного термогигрометра (вид снизу)

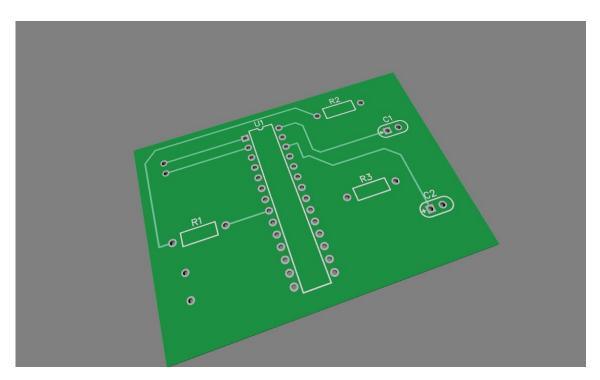


Рисунок 16 – 3D модель печатной платы прибора электронного термогигрометра (вид сверху)

Рисунок 17 – 3D модель прибора

Заключение

Целью данной курсовой работы являлась разработка проектноконструкторской документации прибора измерения влажности воздуха.

Для достижения поставленной цели мы успешно решили следующие задачи:

- выполнили обзор основных понятий и терминов по теме влажность, существующих систем и приборов для измерения влажности, технических характеристик исследуемого объекта;
- провели анализ приборов для измерения влажности и выбрали среди них наиболее подходящий для решения нашей задачи (термогигрометр);
- разработали графическими средствами DipTrace функциональную схему прибора, принципиальную электрическую схему и печатную плату прибора.

Был выбран прибор ИВТМ -7 М для измерения влажности и температуры, рассмотрены его технические характеристики, конструкция.

Исходя из вышесказанного, можно полагать, что цель курсовой работы достигнута, выполнены основные этапы проектирования: аналитический обзор, составление функциональной схемы, разработка электрической принципиальной схемы и ее печатной платы.

Список использованных источников

- 1. Брилев Д.В. Физика. ООО «ТД «Издательство Мир книги» 2006г
- 2. Куприн М.Я. Физика в сельском хозяйстве. Издательство «Просвещение» 1985г
- 3. Кац Ц.Б. Биофизика на уроках физики. Издательство «Просвещение» 1974г.
- 4. Рыженков А.П. Физика. Человек. Окружающая среда. Издательство «Просвещение» 1996г.
- 5. Перельман Я.И. Занимательная физика. Издательство «Наука» 1986г.
- 6. Богословский В.Н. Строительная теплофизика (теплофизические основы отопления, вентиляции и кондиционирования воздуха). Учебник для вузов., М., «Высшая школа», 1970. 370 с.
- 7. Коряков В.И., Запорожец А.С. Приборы в системах контроля влажности твердых веществ и их метрологические характеристики. // Практика приборостроения. 2002. №1. С. 5–11.
- 8. Ивченко Ю.А., Федоров А.А. Чем измерить влажность? // Датчики и системы. 2003. №8. С. 53 54.
- 9. Баркалов Б.В., Карпис Б.Е. Кондиционирование воздуха в промышленных, общественных и жилых зданиях. Стройиздат, М., 1971.
- 10. Международные метеорологические таблицы, І-ІІ серии, Обнинск, 1975.
- 11. Матвеев Л. Т., Курс общей метеорологии. <u>Физика</u> атмосферы, 2 изд., Л., 1984.
- 12. Мазин И. II., Шметер С. М., Облака, строение и физика образования, Л., 1983.
- 13. Хргиан А. Х., Физика атмосферы, М., 1986. С.

Изм.	Лист	№ докум.	Подп.	Дата

- 14. Влажность потока [Электронный ресурс]: Режим доступа: http://ru.wikipedia.org/wiki/%CE%F2%ED%EE%F1%E8%F2%E5%EB%FC %ED%E0%FF %E2%EB%E0%E6%ED%EE%F1%F2%FC Загл. с экрана.
- 15.Зеленый уголок [Электронный ресурс]: Режим доступа: http://www.greencorner-al.ru/vlagnost.html Загл. с экрана.
- 16.Влажность воздуха в атмосфере [Электронный ресурс]: Режим доступа: http://www.180let.ru/index.php? option=com_content&view=article&id=74&Itemid=55 Загл. с экрана.
- 17. Энциклопедия физики и техники [Электронный ресурс]: Режим доступа: http://femto.com.ua/articles/part 1/0514.html Загл. с экрана.
- 18. Гигрометр Википедия [Электронный ресурс]. Режим доступа: http://ru.wikipedia.org/wiki/гигрометр. Загл. с экрана.
- 19.Психрометр Википедия [Электронный ресурс]. Режим доступа: http://ru.wikipedia.org/wiki/Психрометр. Загл. с экрана.
- 20. Арутюнов, В.О.; Валицкий, В.П. Электроизмерительные приборы; М.: Госэнергоиздат, 2012. 199 с.
- 21. Байрашевский, А.М.; Быков, В.И.; Никитенко, Ю.И. и др. Радионавигационные приборы; М.: Транспорт, 2007. 448 с.
- 22. Берман, Л.С. Новые радиотехнические полупроводниковые приборы; Л.: ЛДНТП, 1988. 683 с.
- 23.Психрометр теория [Электронный ресурс]. Режим доступа: http://www.kottedjj.ru/?a=product&cat=3&id=314. Загл. с экрана.
- 24. Брюхе; Рекнагель Электронные приборы; М.: Госэнергоиздат, 1990. 584 с.
- 25. Галкин, В.И.; Булычев, А.Л.; Прохоренко, В.А. Полупроводниковые приборы; Минск: Беларусь; Издание 2-е, перераб. и доп., 1987. 285 с.